top of page

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing

Report from Duke University

Stephen G. Osborna, Avner Vengoshb, Nathaniel R. Warnerb, and Robert B. Jacksona,b,c,1 aCenter on Global Change, Nicholas School of the Environment, bDivision of Earth and Ocean Sciences, Nicholas School of the Environment, and cBiology Department, Duke University, Durham, NC 27708

Edited* by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved April 14, 2011 (received for review January 13, 2011)

Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shalegas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH4 L−1 (n ¼ 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mgL−1 (P < 0.05; n ¼ 34). Average δ13C-CH4 values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (−37  7‰ and −54  11‰, respectively; P < 0.0001). These δ13C-CH4 data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ2H-CH4 values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/ thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and— possibly—regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.

Recent Posts

See All

JOIN THE MOVEMENT!

 Get the Latest News & Updates

Thanks for submitting!

Contact Us

 SAFE is comprised solely of volunteers in their non-working hours, so please allow at least 48 hours for a response.  We will make every effort to respond sooner, but we cannot guarantee someone will be able to respond immediately due to the fact that we have no full-time staff.  We are dedicated farmers, teachers, lawyers, and other everyday people working as hard as we can to protect our home. Thank you for your consideration.

Thanks for submitting!

(872) 201-8525

ADDRESS:

SAFE

PO Box 1224

Carbondale, IL 62903

Social Media:

bottom of page